Cu-Catalyzed Multicomponent Reaction of Styrenes, Perfluoroalkyl Halide, Alcohol, and *tert*-Butyl Hydroperoxide: One-Pot Synthesis of (Z)- β -Alkoxyperfluoroalkenone

Qiang Luo,[†] Chunmei Liu,[†] Jingjing Tong,[‡] Ying Shao,^{*,‡} Wenyu Shan,[†] Hanghang Wang,[†] Hao Zheng,[‡] Jiang Cheng,[‡] and Xiaobing Wan^{*,†}

[†]Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

[‡]Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, P. R. China

Supporting Information

ABSTRACT: An efficient synthesis of Z-perfluoroalkyl-substituted enones by a multicomponent reaction strategy has been described. A variety of elusive perfluoroalkylated enones are furnished under mild reaction conditions in good yields with unique chemo- and stereo-

selectivity. A sequence of radical-mediated Kornblum–DeLaMare reaction, Michael addition, and HF elimination is proposed for the mechanism.

INTRODUCTION

Owing to its particular physical, chemical, and biological properties, perfluoroalkyl has become one of the most prevalent functionalities used in agrochemicals, pharmaceuticals, and materials.¹ As a result, the development of efficient perfluoroalkylation methods is of considerable importance. Although significant progress has been made on the construction of C–R_f bonds, the main efforts employ costly perfluoroalkylation reagents,² e.g., Togni reagents,³ Umemoto reagent,⁴ and Ruppert reagent,⁵ which might limit the practicality, especially in large-scale reactions. Therefore, the development of a complementary perfluoroalkylation method utilizing routine and inexpensive reagents is still in demand.

The perfluoroalkylation with $R_f X$ has been achieved by means of transition-metal catalysis⁶ or radical-mediated transformations by use of peroxide,⁷ Na₂S₂O₄,⁸ AIBN,⁹ TMS₃SiH/ O_2 ,¹⁰ BEt₃/O₂,¹¹ (*n*-Bu₃Sn)₂,¹² or reductive photocatalysis.¹³ The addition of perfluoroalkyl radical to olefins offers a straightforward and powerful perfluoroalkylation method (Scheme 1a–e).¹⁴

Recently, we reported the efficient synthesis of (Z)- β perfluoroalkyl enaminones in the presence of Co(acac)₂ and *tert*-butyl hydroperoxide (TBHP) by a multicomponent reaction strategy (Scheme 1e).¹⁵ Inspired by these results, we hypothesized that under similar conditions the reaction among olefin, R_tX, and alcohol might give rise to (Z)-perfluoroalkylsubstituted enone (Scheme 1f). Herein, we disclose our new findings in the radical-mediated synthesis of (Z)- β -alkoxyperfluoroalkyl-substituted enones. A variety of elusive perfluoroalkylated enones have been obtained under mild reaction conditions in good yields with unique chemo- and stereoselectivity. The possible mechanism involves the sequence of

Scheme 1. Radical-Mediated Perfluoroalkylation of Olefin Previous work:

radical-mediated Kornblum–DeLaMare reaction, Michael addition, and HF elimination.

Received: November 20, 2015 Published: March 16, 2016

The Journal of Organic Chemistry

RESULTS AND DISCUSSION

The initial study was conducted with 1-*tert*-butyl-4-vinylbenzene (1a), perfluorooctyl iodide (2a), and 2-methoxyethanol (3a). In the presence of tetrabutylammonium iodide (TBAI) and TBHP,¹⁶ the desired product (*Z*)- β -alkoxyperfluoroalkyl enone 4a was isolated in 44% yield within 5 h at 80 °C (Table 1, entry 1), indicating that the combination of TBAI

Table 1. Optimization of Reaction Conditions^a

Ar 🔶 +	- <i>n</i> -C ₈ F ₁₇ I + HO	catalys	st, oxidant ditive O≕ ℃, 5 h ਮ	ArO
1a	2a	3a		4a
entry	catalyst	oxidant	additive	% yield ^b
1	TBAI	TBHP	DABCO	44
2	$Co(acac)_2$	TBHP	DABCO	75
3	$Cu(acac)_2$	TBHP	DABCO	75
4		TBHP	DABCO	42
5	$Cu(acac)_2$		DABCO	ND^{c}
6	$Cu(acac)_2$	TBHP		trace
7	$Cu(acac)_2$	H_2O_2	DABCO	ND
8	$Cu(acac)_2$	CHP^d	DABCO	67
9	$Cu(acac)_2$	$TBPB^{e}$	DABCO	ND
10	$Cu(acac)_2$	di- <i>tert</i> -peroxid	e DABCO	trace
11	$Cu(acac)_2$	oxone	DABCO	trace
12	$Cu(acac)_2$	TBHP	Cs_2CO_3	ND
13	$Cu(acac)_2$	TBHP	NaOAc	19
14	$Cu(acac)_2$	TBHP	DMAP	trace
15	$Cu(acac)_2$	TBHP	DBU	19

^{*a*}Reaction conditions: 1-*tert*-butyl-4-vinylbenzene (1a, 0.2 mmol), perfluorooctyl iodide ($C_8F_{17}I$) (2a, 0.6 mmol, 3.0 equiv), 2methoxyethanol (3a, 1.0 mmol, 5.0 equiv), catalyst (10 mol %), additive (3.0 equiv), and TBHP (5.0–6.0 M in decane, 3.8 equiv) in 1.0 mL of solvent (THF:PE = 1:4), 80 °C, 5 h (Ar = 4-*t*-Bu-C₆H₄). ^{*b*}Isolated yield. ^{*c*}Not detected. ^{*d*}CHP: cumene hydroperoxide. ^{*e*}TBPB: *tert*-butyl peroxybenzoate.

and TBHP could promote the formation of perfluoroalkyl radical from perfluoroalkyl iodide. The yield of **4a** could be increased to 75% by switching the catalyst to $Co(acac)_2$ (Table 1, entry 2). The similar yield could also be obtained by use of $Cu(acac)_2$ as catalyst (Table 1, entry 3). Later investigation showed that $Cu(acac)_2$, DABCO, and TBHP are all essential

for the conversions (Table 1, entries 4–6). Replacement of TBHP by other oxidants such as H_2O_2 or DTBP reduced the chemical yields (Table 1, entries 7–11). The use of other bases such as Cs_2CO_3 or DBU in lieu of DABCO resulted in poor yields (Table 1, entries 12–15).

With the optimized reaction conditions in hand, we set out to explore the scope of this perfluoroalkylation reaction. First, a variety of olefins was applied. The protocol exhibited high functional group compatibility, including halide (4c-4g), alkyl (4a, 4h), ether (4i, 4j), BocNH group (4k), CN (4l), and CF₃ (4m) (Scheme 2). Aliphatic olefins were not tolerated under the reaction conditions. The (*Z*)-configuration of β -alkoxyperfluoroalkyl enone was unambiguously assigned by X-ray crystallography of 5 derived from 4d (Scheme 3).

The reaction of styrene 1a with a variety of perfluoroalkyl halides was then investigated (Scheme 4). A series of perfluoroalkyl iodides with 3–10 carbons reacted smoothly to afford the corresponding products **6a**, **6b**, **6c**, and **6e**. The desired products were also delivered in satisfactory yields while perfluoroalkyl bromides were used (**6d** and **4a**).

Subsequently, a range of aliphatic alcohols were examined (Scheme 5). The chain length of the alcohols has little impact on the reaction outcome (7a-7d). The presence of additional functional groups, such as esters and NHBoc, was also tolerated in the reaction, giving the corresponding products in moderate yields (7i-7k). Notably, the reaction with fluorinated alcohols readily generated the products in good yields (7l-7o).

A set of experiments was conducted to elucidate the possible mechanism. First, the result of significant suppression by adding radical inhibitors TEMPO to the reaction might suggest that the reaction went through a radical-mediated pathway (Scheme 6a). Trace amounts of byproducts 8 and 9 were observed in the reaction. While the treatment of 8 with alcohol under the standard reaction conditions failed to produce the expected product 4a (Scheme 6b), the reaction of 9 with alcohol resulted in the desired product 4a in good yield (Scheme 6c). These results suggested that the compound 9 was a key intermediate in the reaction, but 8 was not.

On the basis of the above results and previous literature, a plausible reaction mechanism is proposed (Scheme 7). Initially, the copper catalyst promotes the decomposition of TBHP to give *t*-BuO radical **A** and *t*-BuOO radical **B** (Scheme 7a).¹⁷ Simultaneously, the copper-catalyzed C–I cleavage of per-fluoroalkyl iodide led to the electrophilic perfluoroalkyl radical

^{*a*}Reaction conditions: 0.2 mmol of styrene (1), 3.0 equiv of perfluorooctyl iodide (2a), 5.0 equiv of 2-methoxyethanol (3a), 10 mol % Cu(acac)₂, 3.0 equiv of DABCO, and 3.8 equiv of TBHP (5.0–6.0 M in decane) in 1.0 mL of solvent (THF:PE = 1:4) were stirred at 80 °C for 5 h. ^{*b*}Yield 27% when treated with Co(acac)₂. ^(Y)Yield 30% when treated with Co(acac)₂.

Scheme 3. Configuration Determination of (Z)- β -Alkoxyperfluoroalkyl Enone

Scheme 4. Scope of Perfluoroalkyl Halides^a

^{*a*}Reaction conditions: 0.2 mmol of 1-*tert*-butyl-4-vinylbenzene (1a), 3.0 equiv of perfluoroalkyl iodide (2), 5.0 equiv of 2-methoxyethanol (3a), 10 mmol % Cu(acac)₂, 3.0 equiv of DABCO, and 3.8 equiv of TBHP (5.0–6.0 M in decane) in 1.0 mL of solvent (THF:PE = 1:4) were stirred at 80 °C for 5 h. ${}^{b}C_{7}F_{15}Br$ as the perfluoroalkyl source. ${}^{c}C_{8}F_{17}Br$ as the perfluoroalkyl source.

C (Scheme 7b).^{6i,j} The addition of **C** to styrene forms a metastable benzylic radical **D** (Scheme 7c), which reacts with radical **B** to generate the peroxide intermediate **E** (Scheme 7d, path a).^{18f} Also, we cannot exclude the possibility of formation of an organo–Cu(III) intermediate via radical recombination and subsequent C–O reductive elimination (Scheme 7d', path b). The Kornblum–DeLaMare reaction with **E** results in perfluoroalkyl ketone **F** (Scheme 7e),¹⁸ which then undergoes the DABCO-promoted elimination of HF and generates α,β -unsaturated aryl ketone **G** (Scheme 7f).¹⁹ Michael addition of alcohol to **G** forms the intermediate **H** (Scheme 7g),^{12b} which eliminates another HF molecule to eventually generate (*Z*)- β -alkoxyperfluoroalkyl-substituted enone (Scheme 7h).

CONCLUSIONS

In summary, an efficient synthesis of Z-perfluoroalkylsubstituted enones by multicomponent reaction strategy has been described. A variety of elusive perfluoroalkylated enones are furnished under mild reaction conditions in good yields with unique chemo- and stereoselectivity. A sequence of radical-mediated Kornblum–DeLaMare reaction, Michael addition, and HF elimination is proposed for the mechanism

EXPERIMENTAL SECTION

General Information. All manipulations were carried out under air atmosphere. Cu(acac)₂ and TBHP (5.0–6.0 M in decane) were purchased from Sigma-Aldrich. Column chromatography was generally performed on silica gel (300–400 mesh), and reactions were monitored by thin-layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H (400 MHz) and ¹³C NMR (100 MHz) data were collected with CDCl₃ as solvent at room temperature. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. ¹H NMR spectra were recorded with tetramethylsilane (δ = 0.00 ppm) as an internal reference. ¹³C NMR spectra were recorded with CDCl₃ (δ = 77.0 ppm) as internal reference.

General Procedures for the Synthesis of 4a–4m, 6a–6e, and 7a–7o. Styrenes (0.2 mmol), perfluorooctyl iodide (0.6 mmol), 2-methoxyethanol (1.0 mmol), $Cu(acac)_2$ (0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (0.6 mmol), TBHP (0.15 mL, 5.0–6.0 M in decane), 0.2 mL THF, and 0.8 mL petroleum ether were added to a tube that uses an air balloon. The reaction mixture was stirred at 80 °C for 5 h. The reaction mixture was quenched with sodium sulfite anhydrous. The organic solvent was then removed in vacuum, and flash silica gel column chromatographic purification with petroleum ether/ethyl acetate mixtures afforded product.

Procedures for the Synthesis of 5. 1-Chloro-4-vinylbenzene (0.2 mmol), 1,1,1,2,2,3,3,4,4-nonafluoro-4-iodobutane (0.6 mmol), 2-methoxyethanol (1.0 mmol), $Cu(acac)_2$ (0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (0.6 mmol), TBHP (0.15 mL, 5.0–6.0 M

^{*a*}Reaction conditions: 0.2 mmol of 1-*tert*-butyl-4-vinylbenzene (1a), 3.0 equiv of perfluoroalkyl iodide (2a), 5.0 equiv of alcohols (3), 10 mmol % $Cu(acac)_2$, 3.0 equiv of additive DABCO, and 3.8 equiv of TBHP (5.0–6.0 M in decane) in 1.0 mL of solvent (THF:PE = 1:4) were stirred at 80 °C for 5 h.

in decane), 0.2 mL THF, and 0.8 mL petroleum ether were added to a tube that uses an air balloon. The reaction mixture was stirred at 80 °C for 5 h. The reaction mixture was quenched with sodium sulfite anhydrous. Organic solvent was then removed in vacuum, and flash silica gel column chromatographic purification with petroleum ether/ ethyl acetate mixtures afforded product. The product was stirred with 2 equiv of (2,4-dinitrophenyl)hydrazine, 2 equiv of TsOH, and 2 equiv of MgSO₄ in 2 mL of EtOH refluxed under 80 °C for 1 h. Organic solvent was removed from the reaction mixture in vacuum and flash silica gel column chromatographic purification with petroleum ether/ ethyl acetate mixtures afforded product 5. A single crystal of 5 was obtained in CH₃OH and CH₂Cl₂.

(Z)-1-(4-tert-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-2-(2-methoxyethoxy)dec-2-en-1-one (4a). Colorless liquid, 75% yield (91 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 6.50 (s, 1H), 4.15 (t, J = 4.5 Hz, 2H), 3.58 (t, J = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); 13 C NMR (100 MHz, CDCl₃) δ 189.1, 157.7, 152.1 (t, J = 24.5 Hz), 134.7, 128.8, 125.8, 106.7 (t, J = 4.5 Hz), 74.8, 70.7, 58.9, 35.2, 31.0, carbons corresponding to the C $_7$ F $_{15}$ group cannot be identified due to C–F coupling; 19 F NMR (400 MHz, CDCl₃) δ –80.80 (t, J = 10.6 Hz, 3F), –115.72 to –115.87 (m, 2F), –121.62 to –122.06 (m, 6F), –122.73 (s, 2F), –126.05 to –126.23 (m, 2F); HRMS (ESI-TOF) calcd for C $_{23}H_{21}F_{15}O_3$ + H⁺ 631.1324, found 631.1331 (M + H⁺); IR (KBr, cm⁻¹) ν 1671, 1606, 1237, 1198, 1144, 1130.

(Z)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-2-(2-methoxyethoxy)-1-phenyldec-2-en-1-one (4b). Colorless liquid, 72% yield (83 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95–7.91 (m, 2H), 7.64–7.58 (m, 1H), 7.54–7.47 (m, 2H), 6.52 (s, 1H), 4.17 (t, *J* = 4.5 Hz, 2H), 3.59 (t, *J* = 4.5 Hz, 2H), 3.34 (s, 3H); ¹³C NMR (100

Article

Scheme 7. Proposed Reaction Mechanism

MHz, CDCl₃) δ 189.2, 152.7 (t, *J* = 24.5 Hz), 137.3, 133.7, 128.8, 128.7, 106.5 (t, *J* = 4.0 Hz), 75.0, 70.7, 58.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.82 (t, *J* = 10.6 Hz, 3F), –115.71 to –115.85 (m, 2F), –121.63 to –122.06 (m, 6F), –122.74 (s, 2F), –126.05 to –126.25 (m, 2F); HRMS (ESI-TOF) calcd for C₁₉H₁₃F₁₅O₃ + Na⁺ 597.0517, found 597.0538 (M + Na⁺); IR (KBr, cm⁻¹) ν 1673, 1624, 1235, 1197, 1143, 1130.

(Z)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-1-(4-fluorophenyl)-2-(2-methoxyethoxy)dec-2-en-1-one (4c). Colorless liquid, 72% yield (85 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.93 (m, 2H), 7.20–7.14 (m, 2H), 6.48 (s, 1H), 4.16 (t, *J* = 4.6 Hz, 2H), 3.59 (t, *J* = 4.6 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.6, 167.4, 164.8, 152.8 (t, *J* = 24.5 Hz), 133.7, 131.7, 131.5, 131.4, 116.1, 115.9, 106.1 (t, *J* = 4.5 Hz), 75.0, 70.7, 58.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.83 (t, *J* = 10.6 Hz, 3F), –103.77 (s, 1F), –115.72 to –115.84 (m, 2F), –121.62 to –122.05 (m, 6F), –122.74 (s, 2F), –126.06 to –126.23 (m, 2F); HRMS (ESI-TOF) calcd for C₁₉H₁₂F₁₆O₃ + H⁺ 593.0598, found 593.0600 (M + H⁺); IR (KBr, cm⁻¹) ν 1673, 1599, 1233, 1198, 1146, 1130.

(Z)-1-(4-Chlorophenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-2-(2-methoxyethoxy)dec-2-en-1-one (4d). Colorless liquid, 68% yield (83 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 6.48 (s, 1H), 4.17 (t, *J* = 4.5 Hz, 2H), 3.60 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.9, 153.2 (t, *J* = 24.5 Hz), 140.3, 135.6, 130.1, 129.2, 105.9 (t, *J* = 4.5 Hz), 75.1, 70.7, 58.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.92 (t, *J* = 10.6 Hz, 3F), –115.81 (t, 2F), -121.66 to -122.13 (m, 6F), -122.80 (s, 2F), -126.11 to -126.34 (m, 2F); HRMS (ESI-TOF) calcd for $C_{19}H_{12}^{35}ClF_{15}O_3$ + Na⁺ 631.0104 and $C_{19}H_{12}^{37}ClF_{15}O_3$ + Na⁺ 631.0133, found 631.0108 (M + Na⁺) and 631.0133 (M + Na⁺); IR (KBr, cm⁻¹) ν 1673, 1622, 1236, 1199, 1145, 1130.

(*Z*)-1-(4-Bromophenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-2-(2-methoxyethoxy)dec-2-en-1-one (4e). Colorless liquid, 67% yield (86 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.6 Hz, 2H), 7.64 (d, *J* = 8.6 Hz, 2H), 6.47 (s, 1H), 4.17 (t, *J* = 4.5 Hz, 2H), 3.60 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 153.2 (t, *J* = 24.0 Hz), 136.0, 132.2, 130.2, 129.1, 105.8 (t, *J* = 4.0 Hz), 75.2, 70.7, 59.0, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.93 (t, *J* = 10.6 Hz, 3F), –115.76 to –115.89 (m, 2F), –121.65 to –122.12 (m, 6F), –122.81 (s, 2F), –126.13 to –126.32 (m, 2F); HRMS (ESI-TOF) calcd for C₁₉H₁₂⁷⁹BrF₁₅O₃ + Na⁺ 675.9628, C₁₉H₁₂⁸¹BrF₁₅O₃ + Na⁺ 677.9608, found 675.9631 (M + Na⁺), 677.9650 (M + Na⁺); IR (KBr, cm⁻¹) ν 1672, 1620, 1236, 1198, 1143, 1130.

(*Z*)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-1-(3-fluorophenyl)-3-(2-methoxyethoxy)dec-2-en-1-one (4f). Colorless liquid, 72% yield (85 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.69 (m, 1H), 7.64–7.60 (m, 1H), 7.52–7.45 (m, 1H), 7.33–7.27 (m, 1H), 6.50 (s, 1H), 4.19 (t, *J* = 4.5 Hz, 2H), 3.61 (t, *J* = 4.5 Hz, 2H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.7, 187.7, 164.2, 161.7, 153.5 (t, *J* = 24.5 Hz), 139.4, 139.4, 130.6, 130.5, 124.6, 124.5, 120.8, 120.6, 115.3, 115.1, 105.7 (t, *J* = 4.5 Hz), 75.3, 70.7, 58.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.96 (t, *J* = 10.6 Hz, 3F), –111.36 (s, 1F), –115.87 (m, 2F), –121.66 to –122.13 (m, 6F),

The Journal of Organic Chemistry

 $-122.83~(s,\ 2F),\ -126.16~to\ -126.34~(m,\ 2F);\ HRMS~(ESI-TOF)$ calcd for $C_{19}H_{12}F_{16}O_3$ + H^+ 593.0604, found 593.0601 (M + $H^+);\ IR~(KBr,\ cm^{-1})~\nu~1676,\ 1609,\ 1239,\ 1199,\ 1145,\ 1130.$

(*Z*)-1-(3-Bromophenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-3-(2-methoxyethoxy)dec-2-en-1-one (4g). Colorless liquid, 64% yield (84 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.07– 8.05 (m, 1H), 7.85–7.82 (m, 1H), 7.75–7.71 (m, 1H), 7.41–7.35 (m, 1H), 6.48 (s, 1H), 4.18 (t, *J* = 4.5 Hz, 2H), 3.60 (t, *J* = 4.5 Hz, 2H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.6, 153.6 (t, *J* = 24.5 Hz), 139.0, 136.5, 131.6, 130.4, 127.3, 123.2, 105.6 (t, *J* = 4.5 Hz), 75.3, 70.7, 59.0, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ -80.95 (t, *J* = 10.6 Hz, 3F), -115.76 to -115.89 (m, 2F), -121.64 to -122.13 (m, 6F), -122.81 (s, 2F), -126.13 to -126.31 (m, 2F); HRMS (ESI-TOF) calcd for C₁₉H₁₂⁷⁹BrF₁₅O₃ + H⁺ 652.9809 (M + H⁺), C₁₉H₁₂⁸¹BrF₁₅O₃ + H⁺ 654.9788 (M + H⁺), found 652.9786 (M + H⁺), 654.9764 (M + H⁺); IR (KBr, cm⁻¹) ν 1674, 1621, 1264, 1199, 1144, 1130.

(Z)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-2-(2-methoxyethoxy)-1-(*p*-tolyl)dec-2-en-1-one (4h). Colorless liquid, 66% yield (78 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.10 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.50 (s, 1H), 4.15 (t, *J* = 4.5 Hz, 2H), 3.68 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 152.1 (t, *J* = 24.5 Hz), 144.8, 134.9, 129.5, 128.9, 106.7 (t, *J* = 4.5 Hz), 74.8, 70.7, 58.9, 21.6, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.99 (t, *J* = 10.7 Hz, 3F), -115.77 to -115.92 (m, 2F), -121.71 to -122.15 (m, 6F), -122.84 (s, 2F), -126.18 to -126.35 (m, 2F); MS (ESI-TOF) calcd for C₂₀H₁₅F₁₅O₃ + H⁺ 589.0854, found 589.0848 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1607, 1237, 1199, 1144, 1130.

(*Z*)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-3-(2-methoxyethoxy)-1-(4-methoxyphenyl)dec-2-en-1-one (4i). Colorless liquid, 58% yield (70 mg); ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.47 (s, 1H), 4.14 (t, *J* = 4.5 Hz, 2H), 3.89 (s, 3H), 3.58 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 188.0, 164.1, 151.6 (t, *J* = 25.5 Hz), 131.2, 130.4, 114.0, 106.9 (t, *J* = 4.5 Hz), 74.6, 70.7, 58.9, 55.5, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (600 MHz, CDCl₃) δ –80.95 (t, *J* = 10.4 Hz, 2F), -115.77 to -115.88 (m, 2F), -121.81 (s, 4F), -122.01 (s, 2F), -122.82 (s, 2F), -126.18 to -126.29 (m, 2F); MS (ESI-TOF) calcd for C₂₀H₁₅F₁₅O₄ + H⁺ 605.0804, found 605.0812 (M + H⁺); IR (KBr, cm⁻¹) ν 1668, 1599, 1238, 1198, 1145, 1130.

(*Z*)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-3-(2-methoxyethoxy)-1-(2-methoxyphenyl)dec-2-en-1-one (4j). Colorless liquid, 48% yield (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.73 (m, 1H), 7.54–7.49 (m, 1H), 7.06–6.96 (m, 2H), 6.60 (s, 1H), 4.20 (t, *J* = 4.7 Hz, 3H), 3.87 (s, 1H), 3.62 (t, *J* = 4.7 Hz, 2H), 3.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 159.0, 150.7 (t, *J* = 24.0 Hz), 134.5, 130.9, 127.9, 120.8, 112.1 (t, *J* = 5.0 Hz), 111.7, 74.9, 70.8, 58.9, 55.3, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ -80.83 (t, *J* = 10.5 Hz, 3F), -115.79 to -115.91 (m, 2F), -121.68 to -122.09 (m, 6F), -122.75 (s, 2F), -125.98 to -126.30 (m, 2F); HRMS (ESI-TOF) calcd for C₂₀H₁₅F₁₅O₄ + H⁺ 605.0804, found 605.0814 (M + H⁺); IR (KBr, cm⁻¹) ν 1665, 1599, 1238, 1198, 1145, 1129.

(*Z*) - *t* e *r t* - B u t y l (4 - (4, 4, 5, 5, 6, 6, 7, 7, -8,8,9,9,10,10,10-Pentadecafluoro-3-(2-methoxyethoxy)dec-2enoyl)phenyl)carbamate (4k). Colorless liquid, 58% yield (80 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 7.03 (s, 1H), 6.48 (s, 1H), 4.15 (t, *J* = 4.5 Hz, 2H), 3.59 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 152.2, 151.9 (t, *J* = 24.0 Hz), 143.9, 131.6, 130.3, 117.6, 106.7 (t, *J* = 4.0 Hz), 81.3, 74.6, 70.7, 58.8, 28.1, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.78 (t, *J* = 10.6 Hz, 3F), -115.65 to -115.82 (m, 2F), -121.60 to -122.04 (m, 6F), -122.71 (s, 2F), -126.03 to -126.20 (m, 2F); HRMS (ESI-TOF) calcd for $C_{24}H_{22}F_{15}NO_5$ + H^+ 690.1331, found 690.1336 (M + $H^+);$ IR (KBr, $cm^{-1})$ ν 3313, 1734, 1668, 1587, 1230, 1200, 1146.

(Z)-4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-3-(2methoxyethoxy)dec-2-enoyl)benzonitrile (4l). Colorless liquid, 42% yield (52 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 6.53 (s, 1H), 4.22 (t, *J* = 4.5 Hz, 2H), 3.62 (t, *J* = 4.5 Hz, 2H), 3.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.3, 154.4 (t, *J* = 24.0 Hz), 140.2, 132.6, 129.0, 117.7, 116.8, 105.1 (t, *J* = 4.0 Hz), 75.5, 70.6, 58.8, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.96 (t, *J* = 10.6, 3F), –115.77 to –115.91 (m, 2F), –121.65 to –122.15 (m, 6F), –122.84 (s, 2F), –126.16 to –126.36 (m, 2F); HRMS (ESI-TOF) calcd for C₂₀H₁₂F₁₅NO₃ + H⁺ 600.0650, found 600.0661 (M + H⁺); IR (KBr, cm⁻¹) ν 2229, 1670, 1606, 1240, 1196, 1145, 1128.

(Z)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Pentadecafluoro-3-(2-methoxyethoxy)-1-(3-(trifluoromethyl)phenyl)dec-2-en-1-one (4m). Colorless liquid, 53% yield (68 mg); ¹H NMR (400 MHz, CDCl₃) & 8.18 (s, 1H), 8.12–8.07 (m, 1H), 7.89–7.84 (m, 1H), 7.69-7.63 (m, 1H), 7.26 (s, 1H), 6.52 (s, 1H), 4.19 (t, J = 4.5 Hz, 2H), 3.61 (t, J = 4.5 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (100 MHz, $CDCl_3$) δ 187.7, 154.0 (t, J = 24.5 Hz), 137.9, 132.1, 131.8, 131.5, 131.1, 130.1, 130.0, 130.0, 130.0, 129.5, 127.6, 125.5, 125.5, 125.4, 125.4, 124.9, 122.2, 119.5, 105.5 (t, J = 4.5 Hz), 75.4, 70.7, 58.9, carbons corresponding to the $\mathrm{C}_7\mathrm{F}_{15}$ group cannot be identified due to C-F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ -63.27 (s, 3F), -81.11 (t, I = 10.6 Hz, 3F), -115.88 to -116.00 (m, 2F), -121.73 to -122.23 (m, 6F), -122.93 (s, 2F), -126.29 to -126.44 (m, 2F); HRMS (ESI-TOF) calcd for $C_{20}H_{12}F_{18}O_3 + H^+ 643.0572 (M + H^+)$, found 643.0576 (M + H⁺); IR (KBr, cm⁻¹) ν 1677, 1622, 1296, 1201, 1171, 1128.

(*Z*)-1-(4-*tert*-Butylphenyl)-4,4,5,5,5-pentafluoro-3-(2methoxyethoxy)pent-2-en-1-one (6a). Colorless liquid, 65% yield (50 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 6.53 (s, 1H), 4.16 (t, *J* = 4.5 Hz, 2H), 3.58 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); ³C NMR (100 MHz, CDCl₃) δ 189.0, 157.7, 151.9 (t, *J* = 24.0 Hz), 134.7, 128.7, 125.8, 106.3 (t, *J* = 4.5 Hz), 74.8, 70.7, 58.9, 35.2, 31.0, carbons corresponding to the C₃F₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –82.79 (s, 3F), –119.33 to –119.37 (m, 2F); HRMS (ESI-TOF) calcd for C₁₈H₂₁F₅O₃ + H⁺ 381.1484, found 381.1482 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1264, 1199, 1166, 1126.

(*Z*)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,6-heptafluoro-3-(2methoxyethoxy)hex-2-en-1-one (6b). Colorless liquid, 57% yield (49 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 6.50 (s, 1H), 4.16 (t, *J* = 4.5 Hz, 2H), 3.58 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.7, 151.8 (t, *J* = 24.0 Hz), 134.7, 128.7, 125.8, 106.6 (t, *J* = 4.5 Hz), 74.7, 70.7, 58.9, 35.2, 31.0, carbons corresponding to the C₃F₇ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.73 (t, *J* = 9.61 Hz, 3F), -116.85 to -116.94 (m, 2F), -126.28 (s, 2F); HRMS (ESI-TOF) calcd for C₁₉H₂₁F₇O₃ + H⁺ 431.1452, found 431.1466 (M + H⁺); IR (KBr, cm⁻¹) ν 1671, 1605, 1227, 1187, 1160, 1120.

(*Z*)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,8-undecafluoro-3-(2-methoxyethoxy)oct-2-en-1-one (6c). Colorless liquid, 67% yield (71 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 6.51 (s, 1H), 4.16 (t, *J* = 4.5 Hz, 2H), 3.58 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.7, 152.1 (t, *J* = 24.5 Hz), 134.7, 128.8, 125.8, 106.7 (t, *J* = 4.5 Hz), 74.8, 70.7, 58.9, 35.2, 31.0, carbons corresponding to the C₃F₁₁ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.91 (t, *J* = 10.5 Hz, 3F), -115.82 to -115.93 (m, 2F), -121.94 to -122.11 (m, 2F), -122.67 to -122.86 (m, 2F), -126.12 to -126.26 (m, 2F); HRMS (ESI-TOF) calcd for C₂₁H₂₁F₁₁O₃ + H⁺ 531.1388, found 531.1405 (M + H⁺); IR (KBr, cm⁻¹) ν 1671, 1606, 1233, 1196, 1160, 1139.

(*Z*)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluoro-3-(2-methoxyethoxy)non-2-en-1-one (6d). Colorless

Article

liquid, 52% yield (60 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 6.51 (s, 1H), 4.16 (t, J = 4.5 Hz, 2H), 3.58 (t, J = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.8, 152.1 (t, J = 24.5 Hz), 134.7, 128.8, 125.8, 106.8 (t, J = 4.5 Hz), 74.8, 70.7, 58.9, 35.2, 31.0, carbons corresponding to the C₆F₁₃ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.86 (t, J = 10.6 Hz, 3F), -115.83 (m, 2F), -121.74 to -122.07 (m, 4F), -122.76 (s, 2F), -126.07 to -126.27 (m, 2F); HRMS (ESI-TOF) calcd for C₂₂H₂₁F₁₃O₃ + H⁺ 581.1356, found 581.1378 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1235, 1196, 1143, 1124.

(Z)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(2-methoxyethoxy)dec-2-en-1-one (4a). Colorless liquid, 42% yield (53 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 6.51 (s, 1H), 4.16 (t, *J* = 4.5 Hz, 2H), 3.58 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.7, 152.1 (t, *J* = 24.5 Hz), 134.8, 128.8, 125.8, 106.8 (t, *J* = 4.5 Hz), 74.8, 70.7, 58.9, 35.2, 31.0, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.92 (t, *J* = 10.6 Hz, 3F), -115.76 to -115.92 (m, 2F), -121.66 to -122.14 (m, 6F), -122.80 (s, 2F), -126.13 to -126.30 (m, 2F); HRMS (ESI-TOF) calcd for C₂₃H₂₁F₁₅O₃ + H⁺ 631.1324, found 631.1331 (M + H⁺); IR (KBr, cm⁻¹) ν 1671, 1606, 1237, 1198, 1144, 1130.

(Z) 1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,-8,9,9,10,10,11,11,12,12,12-Nonadecafluoro-3-(2methoxyethoxy)dodec-2-en-1-one (6e). Colorless liquid, 61% yield (89 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 6.51 (s, 1H), 4.15 (t, *J* = 4.5 Hz, 2H), 3.58 (t, *J* = 4.5 Hz, 2H), 3.33 (s, 3H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.7, 152.1 (t, *J* = 24.0 Hz), 134.8, 128.8, 125.8, 106.7 (t, *J* = 4.5 Hz), 74.8, 70.7, 58.9, 35.2, 30.9, carbons corresponding to the C₉F₁₉ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.80 (t, *J* = 10.5 Hz, 3F), -115.75 to –115.90 (m, 2F), –121.59 to –122.03 (m, 10F), –122.72 (s, 2F), –126.05 to –126.25 (m, 2F); HRMS (ESI-TOF) calcd for C₂₅H₂₁F₁₉O₃ + H⁺ 731.1260, found 731.1263 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1237, 1202, 1149, 1130.

(*Z*)-1-(4-*tert*-Butylphenyl)-3-(2-ethoxyethoxy)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluorodec-2-en-1one (7a). Colorless liquid, 77% yield (99 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 6.50 (s, 1H), 4.15 (t, *J* = 4.6 Hz, 2H), 3.62 (t, *J* = 4.6 Hz, 2H), 3.48 (q, *J* = 7.0 Hz, 2H), 1.35 (s, 9H), 1.15 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 157.7, 152.2 (t, *J* = 24.0 Hz), 134.8, 128.8, 125.8, 106.5 (t, *J* = 4.5 Hz), 75.0, 68.6, 66.6, 35.2, 31.00, 14.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.87 (t, *J* = 10.6 Hz, 3F), -115.75 to -115.89 (m, 2F), -121.64 to -122.09 (m, 6F), -122.76 (s, 2F), -126.08 to -126.27 (m, 2F); HRMS (ESI-TOF) calcd for C₂₄H₂₃F₁₅O₃ + H⁺ 645.1480, found 645.1484 (M + H⁺); IR (KBr, cm⁻¹) ν 1671, 1606, 1237, 1199, 1144, 1130.

(Z)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(3-methoxypropoxy)dec-2-en-1-one (7b). Colorless liquid, 58% yield (75 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 6.48 (s, 1H), 4.10 (t, *J* = 6.1 Hz, 2H), 3.42 (t, *J* = 6.2 Hz, 2H), 3.28 (s, 3H), 1.90 (m, 2H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 157.7, 152.0 (t, *J* = 24.0 Hz), 134.8, 128.8, 125.8, 106.5 (t, *J* = 4.5 Hz), 72.6, 68.3, 58.5, 35.2, 31.0, 29.8, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (376 MHz, CDCl₃) δ –80.80 (t, *J* = 10.6 Hz, 3F), -115.65 to -115.81 (m, 2F), -121.62 to -122.07 (m, 6F), -122.72 (s, 2F), -126.00 to -126.26 (m, 2F); HRMS (ESI-TOF) calcd for C₂₄H₂₃F₁₅O₃ + H⁺ 645.1480, found 645.1488 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1237, 1198, 1147, 1128.

(Z)-1-(4-tert-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(4-methoxybutoxy)dec-2-en-1-one (7c). Colorless liquid, 56% yield (77 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 6.45 (s, 3H), 4.02 (t, *J* = 6.2 Hz, 2H), 3.35 (t, *J* = 6.2 Hz, 2H), 3.28 (s, 3H), 1.76–1.67 (m, 2H), 1.66–1.57 (m, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 157.7, 151.9 (t, *J* = 24.0 Hz), 134.8, 128.8, 125.8, 106.3 (t, *J* = 4.5 Hz), 75.5, 71.9, 58.3, 35.2, 31.0, 26.2, 25.6, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.82 (t, *J* = 10.5 Hz, 3F), –115.61 to –115.87 (m, 2F), –121.64 to –122.06 (m, 6F), –122.73 (s, 2F), –126.02 to –126.25 (m, 2F); HRMS (ESI-TOF) calcd for C₂₅H₂₅F₁₅O₃ + Na⁺ 681.1456, found 681.1486 (M + Na⁺); IR (KBr, cm⁻¹) ν 1671, 1606, 1237, 1200, 1147, 1130.

(Z)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(2-phenoxyethoxy)dec-2-en-1-one (7d). Colorless liquid, 76% yield (105 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.28–7.21 (m, 2H), 6.96–6.90 (m, 1H), 6.86–6.81 (m, 2H), 6.58 (s, 1H), 4.37 (t, *J* = 4.5 Hz, 2H), 4.15 (t, *J* = 4.6 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 158.4, 157.9, 152.2 (t, *J* = 24.5 Hz), 134.7, 129.4, 128.8, 125.9, 121.1, 114.5, 107.0 (t, *J* = 4.5 Hz), 73.9, 66.0, 35.2, 31.0, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.78 (t, *J* = 10.6 Hz, 3F), –115.68 to –115.85 (m, 2F), –121.51 to –122.03 (m, 6F), –122.67 (s, 2F), –125.98 to –126.22 (m, 2F); HRMS (ESI-TOF) calcd for C₂₈H₂₄O₃F₁₅ 693.1486, found 693.1508 (M + H⁺); IR (KBr, cm⁻¹) ν 1676, 1602, 1236, 1197, 1145, 1128.

(*Z*)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-propoxydec-2-en-1-one (7e). Colorless liquid, 57% yield (70 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 6.44 (s, 1H), 3.95 (t, *J* = 6.3 Hz, 2H), 1.71–1.61 (m, 2H), 1.35 (s, 9H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 157.6, 152.2 (t, *J* = 24.5 Hz), 134.8, 128.8, 125.8, 106.0 (t, *J* = 4.5 Hz), 77.3, 35.2, 31.0, 22.8, 9.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.81 (t, *J* = 10.5 Hz, 3F), –115.63 to –115.81 (m, 2F), –121.64 to –122.06 (m, 6F), –122.73 (s, 2F), –126.04 to –126.22 (m, 2F); HRMS (ESI-TOF) calcd for C₂₃H₂₁F₁₅O₂ + H⁺ 615.1375, found 615.1390 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1237, 1199, 1146, 1131.

(*Z*) - 3 - B u t o x y - 1 - (4 - *t e r t* - b u t y l p h e n y l) -4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluorodec-2-en-1one (7f). Colorless liquid, 60% yield (78 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 6.44 (s, 1H), 3.99 (t, *J* = 6.3 Hz, 2H), 1.65–1.57 (m, 2H), 1.38–1.33 (m, 11H), 0.88 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 157.6, 152.1 (t, *J* = 24.0 Hz), 134.9, 128.8, 125.8, 106.0 (t, *J* = 4.0 Hz), 75.5, 35.2, 31.5, 31.0, 18.6, 13.5, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.73 (t, *J* = 10.6 Hz, 3F), –115.61 to –115.77 (m, 2F), –121.62 to –122.00 (m, 6F), –122.69 (s, 2F), –125.94 to –126.19 (m, 2F); HRMS (ESI-TOF) calcd for C₂₄H₂₃F₁₅O₂ + Na⁺ 651.1351, found 651.1355 (M + Na⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1237, 1200, 1147, 1131.

(Z)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(pentyloxy)dec-2-en-1-one (7g). Colorless liquid, 56% yield (72 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 6.43 (s, 1H), 3.98 (t, J = 6.4Hz, 2H), 1.67–1.58 (m, 2H), 1.35 (s, 9H), 1.32–1.24 (m, 4H), 0.86 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 157.6, 152.1 (t, J = 24.0 Hz), 134.9, 128.8, 125.8, 106.0 (t, J = 4.5 Hz), 75.8, 35.2, 31.0, 29.1, 27.5, 22.2, 13.7, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.85 (t, J = 10.6 Hz, 3F), –115.66 to –115.80 (m, 2F), –121.64 to –122.07 (m, 6F), –122.75 (s, 2F), –126.06 to –126.24 (m, 2F); HRMS (ESI-TOF) calcd for C₂₅H₂₅O₂F₁₅ + H⁺ 643.1693, found 643.1687 (M + H⁺); IR (KBr, cm⁻¹) ν 1671, 1606, 1238, 1200, 1146, 1131.

(Z)-1-(4-tert-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(hexyloxy)dec-2-en-1-one (7h). Colorless liquid, 60% yield (79 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 6.44 (s, 1H), 3.99 (t, J = 6.4Hz, 2H), 1.66–1.58 (m, 2H), 1.35 (s, 9H), 1.32–1.20 (m, 6H), 0.85 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 157.6, 152.1 (t, *J* = 24.0 Hz), 134.9, 128.8, 125.8, 106.0 (t, *J* = 4.5 Hz), 75.8, 35.2, 31.3, 31.0, 29.4, 25.0, 22.4, 13.8, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (376 MHz, CDCl₃) δ –80.83 (t, *J* = 10.4 Hz, 3F), –115.63 to –115.80 (m, 2F), –121.65 to –122.07 (m, 6F), –122.74 (s, 2F), –126.05 to –126.24 (m, 2F); HRMS (ESI-TOF) calcd for C₂₆H₂₇O₂F₁₅ + H⁺ 657.1850, found 657.1848 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1237, 1200, 1147, 1131.

(*Z*)-2-((1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-1-oxodec-2-en-3-yl)oxy)ethyl Benzoate (7i). Colorless liquid, 65% yield (94 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 2H), 7.89 (d, *J* = 7.9 Hz, 2H), 7.58–7.50 (m, 3H), 7.43–7.38 (m, 2H), 6.60 (s, 1H), 4.53 (t, *J* = 4.3 Hz, 2H), 4.38 (t, *J* = 4.3 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 166.3, 157.9, 151.9 (t, *J* = 24.5 Hz), 134.6, 133.1, 129.6, 128.8, 128.2, 125.9, 107.3 (t, *J* = 4.5 Hz), 73.3, 62.8, 35.2, 31.0, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.79 (t, *J* = 10.5 Hz, 3F), -115.74 to -115.88 (m, 2F), -121.43 to -121.64 (m, 2F), -121.65 to -122.10 (m, 4F), -122.74 (s, 2F), -126.04 to -126.21 (m, 2F); HRMS (ESI-TOF) calcd for C₂₉H₂₃O₄F₁₅ + H⁺ 721.1435, found 721.1421 (M + H⁺); IR (KBr, cm⁻¹) ν 1723, 1671, 1605, 1237, 1201, 1146, 1131.

(Z)-2-((1-(4-tert-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-1-oxodec-2-en-3-yl)oxy)ethyl Acetate (7j). Colorless liquid, 57% (75 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 6.58 (s, 1H), 4.29–4.21 (m, 4H), 2.02 (s, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 170.7, 157.9, 152.0 (t, *J* = 24.5 Hz), 134.6, 128.7, 125.9, 107.2 (t, *J* = 4.0 Hz), 73.3, 62.3, 35.2, 31.0, 20.4, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.79 (t, *J* = 10.6 Hz, 3F), –115.78 to –115.90 (m, 2F), –121.60 to –122.06 (m, 6F), –122.71 (s, 2F), –126.03 to –126.20 (m, 2F); HRMS (ESI-TOF) calcd for C₂₄H₂₁O₄F₁₅ + H⁺ 659.1279, found 659.1290 (M + H⁺); IR (KBr, cm⁻¹) ν 1747, 1672, 1606, 1232, 1200, 1145, 1110.

(*Z*)-*tert*-Butyl (2-((1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluoro-1-oxodec-2en-3-yl)oxylethyl)carbamate (7k). Colorless liquid, 59% (87 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 6.56 (s, 1H), 4.90 (s, 1H), 4.06 (t, *J* = 4.8 Hz, 2H), 3.44– 3.36 (m, 2H), 1.41 (s, 9H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 157.9, 155.7, 151.6 (t, *J* = 24.5 Hz), 134.5, 128.8, 125.8, 107.9 (t, *J* = 4.5 Hz), 79.5, 74.8, 40.1, 35.2, 31.0, 28.2, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.82 (t, *J* = 10.5 Hz, 3F), -115.61 to -115.85 (m, 2F), -121.59 to -122.02 (m, 6F), -122.71 (s, 2F), -126.02 to -126.22 (m, 2F); HRMS (ESI-TOF) calcd for C₂₇H₂₈F₁₅NO₄ + Na⁺ 738.1671, found 738.1684 (M + Na⁺); IR (KBr, cm⁻¹) ν 3365, 1716, 1672, 1606, 1237, 1201, 1173, 1148.

(Z)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(2-fluoroethoxy)dec-2-en-1-one (7l). Colorless liquid, 71% (88 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 6.60 (s, 1H), 4.66–4.50 (m, 1H), 4.34–4.22 (m, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 158.0, 152.1 (t, *J* = 24.5 Hz), 134.7, 128.8, 125.9, 107.2 (t, *J* = 4.5 Hz), 82.1, 80.4, 74.6, 74.4, 35.2, 31.0, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.81 (t, *J* = 11.4 Hz, 3F), –115.66 to –116.11 (m, 2F), –121.28 to –122.22 (m, 6F), –122.73 (s, 2F), –125.93 to –126.35 (m, 2F), –224.51 (s, 1F); HRMS (ESI-TOF) calcd for C₂₂H₁₉F₁₆O₂ 619.1124, found 619.1137 (M + H⁺); IR (KBr, cm⁻¹) ν 1672, 1606, 1237, 1199, 1146, 1110.

(Z)-1-(4-*tert*-Butylphenyl)-3-(2,2-difluoroethoxy)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-pentadecafluorodec-2-en-1one (7m). Colorless liquid, 75% (90 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 6.71 (s, 1H), 6.11–5.79 (m, 1H), 4.28–4.19 (m, J = 12.8, 4.0 Hz, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 158.3, 151.7 (t, J = 25.0 Hz), 134.5, 128.8, 126.0, 115.0, 112.6, 110.2, 108.8 (t, J = 4.5 Hz), 73.6, 73.3, 73.0, 35.3, 30.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.95 (t, J = 10.6 Hz, 3F), –115.94 to –116.09 (m, 2F), –121.72 to –122.13 (m, 6F), –122.81 (s, 2F), –126.15 to –126.32 (m, 2F), –126.57 (s, 2F); HRMS (ESI-TOF) calcd for C₂₂H₁₇F₁₇O₂ + H⁺ 637.1030, found 637.1032 (M + H⁺); IR (KBr, cm⁻¹) ν 1674, 1605, 1238, 1200, 1144, 1130.

(Z)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-(2,2,2-trifluoroethoxy)dec-2-en-1-one (7n). Colorless liquid, 69% (90 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 6.77 (s, 1H), 4.43 (q, *J* = 7.9 Hz, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 158.5, 151.4 (t, *J* = 25.0 Hz), 134.3, 128.8, 126.0, 108.9 (t, *J* = 4.0 Hz), 71.6, 71.2, 70.8, 70.5, 35.3, 30.9, carbons corresponding to the C₇F₁₅ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –74.99 (s, 3F), –80.84 (t, *J* = 10.6 Hz, 3F), –115.79 to –115.96 (m, 2F), –121.65 to –122.05 (m, *J* = 25.0, 6F), –122.76 (s, 2F), –126.02 to –126.25 (m, 2F); HRMS (ESI-TOF) calcd for C₂₂H₁₆O₂F₁₈ + H⁺ 655.0941, found 655.0935 (M + H⁺); IR (KBr, cm⁻¹) ν 1675, 1605, 1238, 1202, 1167, 1146.

(*Z*)-1-(4-*tert*-Butylphenyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,10pentadecafluoro-3-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)dec-2-en-1-one (70). Colorless liquid, 76% (110 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 6.86 (s, 1H), 6.57–6.48 (m, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 159.0, 149.0 (t, *J* = 25.0 Hz), 134.5, 128.9, 126.1, 108.6 (t, *J* = 4.5 Hz), 77.8, 77.5, 77.0, 76.8, 76.5, 76.1, 75.8, 35.3, 30.8, carbons corresponding to the C₇F₁₅ group and two CF₃ groups cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –73.62 (s, 6F), –81.01 (t, *J* = 10.6 Hz, 3F), –115.30 to –115.47 (m, 2F), –121.68 to –122.19 (m, 6F), –122.88 (s, 2F), –126.21 to –126.38 (m, 2F); HRMS (ESI-TOF) calcd for C₂₃H₁₅O₂F₂₁ + H⁺ 723.0815, found 723.0840 (M + H⁺); IR (KBr, cm⁻¹) ν 1675, 1605, 1293, 1199, 1146, 1110.

(E)-1-tert-Butyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodec-1-en-1-yl)benzene (8).⁶ Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 24 Hz, 4H), 7.16–7.12 (m, 1H), 6.17–6.13 (m, 1H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 139.5, 130.8, 127.5, 126.9, 113.4 (t, 3 Hz), 110.4, 34.8, 31.2, carbons corresponding to the C₈F₁₇ group cannot be identified due to C–F coupling; ¹⁹F NMR (400 MHz, CDCl₃) δ –80.8 (t, J = 8.0 Hz, 3F), –110.93 to –110.95 (m, 2F), –121.40 (s, 2F), –121.95 (s, 4F), –122.75 (s, 2H), –123.26 (s, 2F), –126.14 (s, 2F).

(*Z*)-1-(4-*tert*-Butylphenyl)-3,4,4,5,5,6,6,7,7,8,8,9,9,9-tetradecafluoronon-2-en-1-one (9).¹⁵ Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.6 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 1.36 (s, 9H).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b02664.

Copies of ¹H NMR, ¹³C NMR, and HRMS spectra for all products, and crystallography data for **5** (PDF) Single-crystal X-ray data for **5** in CIF format (CIF)

AUTHOR INFORMATION

Corresponding Authors

*Y.S. e-mail: shaoying810724@163.com. *X.W. e-mail: wanxb@suda.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions

The Journal of Organic Chemistry

(PAPD), the Natural Science Foundation of China (No. 21272165; 21302015), the Jiangsu Planned Projects for Postdoctoral Research Fund (No. 1501094B), and the China Postdoctoral Science Foundation funded project.

REFERENCES

 (a) Kirsch, P. Modern Fluoroorgannic Chemistry: Syntheses, Reactivities, Applications; Wiley-VCH, 2004. (b) Uneyama, K. Organofluorine Chemistry; Blackwell, 2006. (c) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (d) Bégué, J.-P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; Wiley, 2008.
 (e) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
 (f) Zhang, C.-P.; Chen, Q. Y.; Guo, Y.; Xiao, J.-C.; Gu, Y. C. Chem. Soc. Rev. 2012, 41, 4536.

(2) Recent reviews on perfluoroalkylation reagent: (a) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536. (b) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (c) Alonso, C.; Martinez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847. (d) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650. (e) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. Chem. Rev. 2015, 115, 973. (f) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.

(3) Some representative examples for the Togni reagent: (a) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007, 46, 754.
(b) Niedermann, K.; Früh, N.; Senn, R.; Czarniecki, B.; Verel, R.; Togni, A. Angew. Chem., Int. Ed. 2012, 51, 6511. (c) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480. (d) Wang, Y.; Jiang, M.; Liu, J.-T. Chem. - Eur. J. 2014, 20, 15315. (e) Xu, P.; Abdukader, A.; Hu, K.; Cheng, Y.; Zhu, C. Chem. Commun. 2014, 50, 2308. (f) Früh, N.; Togni, A. Angew. Chem., Int. Ed. 2014, 53, 10813. (g) Kananovich, D. G.; Konik, Y. A.; Zubrytski, D. M.; Järving, I.; Lopp, M. Chem. Commun. 2015, 51, 8349. (h) Kawamura, S.; Egami, H.; Sodeoka, M. J. Am. Chem. Soc. 2015, 137, 4865. (i) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.

(4) (a) Zhang, C.-P.; Wang, Z. L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896. (b) Zhang, X.-G.; Dai, H.-X.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 11948. (c) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Medebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505. (d) Besset, T.; Cahard, D.; Pannecoucke, X. J. Org. Chem. 2014, 79, 413. (e) Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 4340. (f) Yasu, Y.; Arai, Y.; Tomita, R.; Koike, T.; Akita, M. Org. Lett. 2014, 16, 780.

(5) (a) Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. J. Am. Chem. Soc.
2011, 133, 7577. (b) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298. (c) Hu, M.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2012, 134, 15257. (d) Mu, X.; Wu, T.; Wang, H. Y.; Guo, L. Y.; Liu, G. J. Am. Chem. Soc.
2012, 134, 878. (e) Hafner, A.; Bihlmeier, A.; Nieger, M.; Klopper, W.; Bräse, S. J. Org. Chem. 2013, 78, 7938. (f) Wang, Y.-F.; Lonca, G. H.; Le Runigo, M.; Chiba, M. S. Org. Lett. 2014, 16, 4272.

(6) (a) Burton, D. J.; Kehoe, L. J. J. Org. Chem. 1970, 35, 1339.
(b) Burton, D. J.; Kehoe, L. J. J. Org. Chem. 1971, 36, 2596. (c) Hu, C.; Qiu, Y. J. Org. Chem. 1992, 57, 3339. (d) Zeng, R.; Fu, C.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3888. (e) Baráta-Vallejo, S.; Postigo, A. Coord. Chem. Rev. 2013, 257, 3051. (f) Xu, T.; Cheung, C.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910. (g) Zhang, B.; Studer, A. Org. Lett. 2014, 16, 3990. (h) He, L.; Natte, K.; Rabeah, J.; Taeschler, C.; Neumann, H.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2015, 54, 4320. (i) Sladojevich, F.; McNeill, E.; Borgel, J.; Zheng, S.; Ritter, T. Angew. Chem., Int. Ed. 2015, 54, 3712. (j) Kato, H.; Hirano, K.; Kurauchi, D.; Toriumi, N.; Uchiyama, M. Chem. - Eur. J. 2015, 21, 3895. (k) Feng, Z.; Min, Q.; Zhao, H.; Gu, J.; Zhang, X. Angew. Chem., Int. Ed. 2015, 54, 1270. (l) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. Chem. Rev. 2015, 115, 973.

(7) (a) Brace, N. J. Org. Chem. **1962**, 27, 4491. (b) Bravo, A.; Bjørsvik, H. R.; Fontana, F.; Liguori, L.; Mele, A.; Minisci, F. J. Org. *Chem.* **1997**, *62*, 7128. (c) Antonietti, F.; Gambarotti, C.; Mele, A.; Minisci, F.; Paganelli, R.; Punta, C.; Recupero, F. *Eur. J. Org. Chem.* **2005**, 2005, 4434.

(8) (a) Bazhin, D. N.; Gorbunova, T. I.; Zapevalov, A. Y.; Saloutin, V.
I. J. Fluorine Chem. 2009, 130, 438. (b) Xiao, Z.-W.; Hu, H.-W.; Ma, J.-L.; Chen, Q.; Guo, Y. Chin. J. Chem. 2013, 31, 939. (c) Yang, B.; Shi, L.; Wu, J.; Fang, X.; Yang, X.; Wu, F. Tetrahedron 2013, 69, 3331.

(9) (a) Brace, N. O. J. Org. Chem. 1967, 32, 430. (b) Naud, C.; Calas,
P.; Blancou, H.; Commeyras, A. J. Fluorine Chem. 2000, 104, 173.
(c) Lazzari, D.; Cassani, M. C.; Solinas, G.; Pretto, M. J. Fluorine Chem.
2013, 156, 34.

(10) Barata-Vallejo, S.; Postigo, A. J. Org. Chem. 2010, 75, 6141.

(11) (a) Itoh, Y.; Mikami, K. Org. Lett. 2005, 7, 4883. (b) Yoshioka, E.; Kohtani, S.; Sawai, K.; Kentefu, I.; Tanaka, E.; Miyabe, H. J. Org. Chem. 2012, 77, 8588.

(12) (a) Yoshida, M.; Ohkoshi, M.; Aoki, N.; Ohnuma, Y.; Iyoda, M. *Tetrahedron Lett.* **1999**, 40, 5731. (b) Yoshida, M.; Ohkoshi; Muraoka, M.; Matsuyama, T. H.; Iyoda, M. *Bull. Chem. Soc. Jpn.* **2002**, 75, 1833. (13) (a) Qiu, Z.; Burton, D. J. Org. Chem. **1995**, 60, 3465. (b) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. J. Org. Chem. **2004**, 69, 6658. (c) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. **2009**, 131, 10875. (d) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. **2011**, 133, 4160. (e) Wallentin, C. J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. **2012**, 134, 8875. (f) Kim, E.; Choi, S.; Kim, H.; Cho, E. Chem. - Eur. J. **2013**, 19, 6209. (g) Yajima, T.; Yamaguchi, K.; Hirokane, R.; Nogami, E. J. Fluorine Chem. **2013**, 150, 1. (h) Nappi, M.; Bergonzini, G.; Melchiorre, P. Angew. Chem., Int. Ed. **2014**, 53, 4921. (i) Woźniak, Ł.; Murphy, J.; Melchiorre, P. J. J. Am. Chem. Soc. **2015**, 137, 5678.

(14) For representative examples on radical addition of perfluoroalkyl halides to olefins, see refs 6d-f, 6k, 7a, 8, 9 10, 12, 13d, and 13g.

(15) Liu, C.; Shi, E.; Xu, F.; Luo, Q.; Wang, H.; Chen, J.; Wan, X. Chem. Commun. 2015, 51, 1214.

(16) Recently, we reported various oxidation reactions using TBHP; see the following: (a) Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. *Chem. - Eur. J.* **2011**, *17*, 4085. (b) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. *Angew. Chem., Int. Ed.* **2012**, *51*, 3231. (c) Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett. **2012**, *14*, 3384. (d) Zhang, F.; Du, P.; Chen, J.; Wang, H.; Luo, Q.; Wan, X. Org. Lett. **2014**, *16*, 1932. (e) Du, P.; Li, H.; Wang, Y.; Cheng, J.; Wan, X. Org. Lett. **2014**, *16*, 6350. (f) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Angew. Chem., Int. Ed. **2015**, *54*, 1231.

(17) (a) Lamani, M.; Prabhu, K. R. Angew. Chem., Int. Ed. 2010, 49, 6622. (b) Wu, J.-C.; Song, R.-J.; Wang, Z.-Q.; Huang, X.-C.; Xie, Y.-X.; Li, J.-H. Angew. Chem., Int. Ed. 2012, 51, 3453. (c) Xia, X.-F.; Zhang, L.-L.; Song, X.-R.; Niu, Y.-N.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 1410. (d) Xie, Y.-X.; Song, R.-J.; Yang, X. H.; Xiang, J.-N.; Li, J.-H. Eur. J. Org. Chem. 2013, 2013, 5737. (e) Rout, S. K.; Guin, S.; Gogoi, A.; Majji, G.; Patel, B. K. Org. Lett. 2014, 16, 1614. (f) Cheng, J.-K.; Loh, T. P. J. Am. Chem. Soc. 2015, 137, 42.

(18) (a) Kornblum, N.; DeLaMare, H. E. J. Am. Chem. Soc. **1951**, 73, 880. (b) Staben, S. T.; Linghu, X.; Toste, F. D. J. Am. Chem. Soc. **2006**, 128, 12658. (c) Nicolaou, K. C.; Totokotsopoulos, S.; Giguère, D.; Sun, Y.-P.; Sarlah, D. J. Am. Chem. Soc. **2011**, 133, 8150. (d) Palframan, M. J.; Kociok-Köhn; Lewis, S. E. Chem. - Eur. J. **2012**, 18, 4766.

(19) (a) Kurykin, M. A.; Vol'pin, I. M.; German, L. S. J. Fluorine Chem. **1996**, 80, 9. (b) Pigeon, X.; Bergeron, M.; Barabe, F.; Dube, P.; Frost, H. N.; Paquin, J. F. Angew. Chem., Int. Ed. **2010**, 49, 1123.

NOTE ADDED AFTER ASAP PUBLICATION

This paper was published ASAP on March 25, 2016. Corrections were made to Scheme 2. The revised paper was reposted on April 6, 2016.